Physics MSci

This four-year programme offers an additional year of study on top of the Physics BSc, during which students have the opportunity to specialise further by taking advanced optional modules, and undertaking a research project.

Key information

Programme starts
September 2020

Location
London, Bloomsbury

Degree benefits

- A science degree from UCL is a strong asset across the whole range of careers where basic scientific skills are required, from accountancy to astrophysics, and computing to cryogenics.
- The programme is accredited by the Institute of Physics (IOP) and includes the very latest developments and discoveries in the field, based on our highly rated research.
- Collaborative links with both industry and international research laboratories provide insight into the practical application of your studies.
- A wide range of optional modules are available, including modules from other University of London colleges, which allows for individual preferences and specialisations within your degree.

Accreditation

This programme is accredited by the Institute of Physics. Holders of accredited degrees can follow a route to Institute of Physics membership and the Chartered Physicist (CPhys) professional qualification. Graduates of accredited Integrated Master’s (MPhys or MSci) degrees have fulfilled the educational requirements for CPhys status, while graduates of accredited Bachelor’s (BSc) degrees have partially fulfilled these requirements.

Degree structure

In each year of your degree you will take a number of individual modules, normally valued at 15 or 30 credits, adding up to a total of 120 credits for the year. Modules are assessed in the academic year in which they are taken. The balance of compulsory and optional modules varies from programme to programme and year to year. A 30-credit module is considered equivalent to 15 credits in the European Credit Transfer System (ECTS).

Compulsory modules in the first year provide a firm foundation in quantum and classical physics, underpinned by mathematics and a practical skills module which includes computing skills training.

The second year includes a compulsory module in quantum physics and its application to atoms and molecules, statistical thermodynamics and electromagnetic theory, along with further mathematics. The quantum and condensed matter elements of the core are completed in the third year.

The second and third year also include practical laboratory and project modules and optional modules to develop further and enhance knowledge of a range of physics topics.

The fourth year comprises a compulsory research project and further optional modules, generally chosen from subjects in the relevant degree specialty. A wide range of modules are available each year and normally some taught by staff from other University of London colleges.

YEAR ONE

Core or compulsory module(s)

- Year 1: All first year modules are compulsory – 120 credits at Level 4
 - PHAS0004 Atoms, Stars and the Universe (15 credits) (Level 4)
 - PHAS0005 Waves, Optics and Acoustics (15 credits) (Level 4)
 - PHAS0006 Thermal Physics (15 credits) (Level 4)
 - PHAS0007 Practical Physics and Computing 1 (15 credits) (Level 4)
 - PHAS0008 Practical Skills 1P (Experimental Physics) (15 credits) (Level 4)
 - PHAS0010 Classical Mechanics (15 credits) (Level 4)
 - PHAS0017 Developing Effective Communications 1 (non-credit, but will appear in student’s transcript)

Optional modules

- All first-year modules are compulsory.

YEAR TWO

Core or compulsory module(s)

- Year 2: 120 credits at Level 5 in total
 - Compulsory modules (105 credits)
 - PHAS0021 Electricity and Magnetism (15 credits) (Level 5)
 - PHAS0022 Quantum Physics (15 credits) (Level 5)
 - PHAS0023 Atomic & Molecular Physics (15 credits) (Level 5)
 - PHAS0024 Statistical Thermodynamics (15 credits) (Level 5)
 - PHAS0028 Practical Physics and Computing 2A (15 credits) (Level 5)
 - PHAS0029 Practical Physics and Computing 2B (15 credits) (Level 5)
 - PHAS0035 Developing Effective Communications 2 (non-credit, but will appear in student’s transcript)

Optional modules

- You will select 15 credits in total from a list including the following (choices must be approved by the Programme Tutor)
 - PHAS0032 Mathematics for Physics and Astronomy (15 credits) (Level 5)
 - PHAS0027 Environmental Physics (15 credits) (Level 5)
 - PHAS0019 Physics of the Solar System (15 credits) (Level 5)
 - or another appropriate module approved by the Programme Tutor
YEAR THREE

Core or compulsory module(s)
- Year 3: 120 credits (at least 90 credits at Level 6)
 - Compulsory modules (90 credits)
 - PHAS0038 Electromagnetic Theory (15 credits) (Level 6)
 - PHAS0040 Nuclear and Particle Physics (15 credits) (Level 6)
 - PHAS0041 Solid State Physics (15 credits) (Level 6)
 - PHAS0042 Quantum Physics (15 credits) (Level 6)
 - PHAS0051 Experimental Physics (15 credits) (Level 6)
 - PHAS0052 Physics Group Project (15 credits) (Level 6)

Optional modules
- You will select 30 credits in total from options including the following (choices must be approved by your Programme Tutor)
 - PHAS0049 Theory of Dynamical Systems (15 credits) (Level 6)
 - PHAS0053 Lasers and Modern Optics (15 credits) (Level 6)
 - PHAS0055 Materials & Energy Materials (15 credits) (Level 6)
 - PHAS0056 Scientific Computing using Object-Oriented Languages (15 credits) (Level 6)
 - PHAS0057 Physics of the Earth (15 credits) (Level 6)
 - PHAS0037 Physical Cosmology (15 credits) (Level 6)
 - GEOL0022 Physics of Oceans, Ice Sheets and Climate (15 credits) (Level 6)

FINAL YEAR

Core or compulsory module(s)
- Year 4: 120 credits at level 7 in total
 - Compulsory module
 - PHAS0097 (M201) Physics Project (45 credits) (Level 7)

Optional modules
- Select 75 credits in total from options including (needs Programme Tutor approval)
 - PHASM047 Physics of Advanced Materials (15 credits) (Level 7)
 - PHASM048 Theoretical Condensed Matter (15 credits) (Level 7)
 - PHAS0061 Advanced Topics in Statistical Mechanics (15 credits) (Level 7)
 - PHAS0069 Advanced Quantum Theory (15 credits) (Level 7)
 - PHAS0105 Atom and Photon Physics (15 credits) (Level 7)
 - PHAS0099 Molecular Physics (15 credits) (Level 7)
 - PHAS0072 Particle Physics (15 credits) (Level 7)
 - PHAS0073 Quantum Field Theory (15 credits) (Level 7)
 - PHAS0074 Space Plasma and Magnetospheric Physics (15 credits) (Level 7)
 - MATH0078 Boundary Layers (15 credits) (Level 7)

Your learning
Teaching is delivered through lectures, laboratory (and as appropriate, observatory) practical sessions, and supervised problem-solving tutorials. These tutorials are designed to deal with lecture-based questions, enlarge on topics addressed in lectures, and allow clarification and in-depth discussion of new concepts.

Assessment
Assessment will normally involve end-of-year examinations, and an element of assessed coursework. Practical work will be continuously assessed.

Your career
Your scientific training will equip you with an understanding of mathematics, and of physical principles and techniques, as well as transferable skills in analysis, rational argument and innovative problem solving. Surveys by the Institute of Physics indicate that physicists’ versatility is welcomed by a wider range of professions than any other subject.

Around half our graduates choose to pursue further study for an MSc or PhD. A PhD opens up the possibility of an academic or research career in a university or research institute. Alternatively, like many of our graduates, you may consider employment in research, design, development, computing, finance, marketing and teaching, among others.

Your application
Application for admission should be made through UCAS (the Universities and Colleges Admissions Service). Applicants currently at school or college will be provided with advice on the process; however, applicants who have left school or who are based outside the United Kingdom may obtain information directly from UCAS.

In addition to the subjects and grades specified in the qualifying examinations, we are also looking for evidence of self-motivation and an enthusiastic interest in the subject. This may be demonstrated through paid or voluntary work experience, academic project work, or your interests and hobbies beyond the school curriculum.

Your application will be carefully assessed based on your UCAS form and reference. If you are made an offer, you will be invited to a Physics Offer Holder’s Day. This will include presentations, a tour of facilities and an opportunity to meet current students and staff members. Attendance is strongly recommended as we cannot provide private tours of the department at the moment.
Entry requirements

A LEVELS

Standard Offer: AAA. Mathematics and Physics required.

Contextual Offer: AAB. A in Mathematics and Physics required.

GCSE

English Language and Mathematics at grade C or 5. For UK-based students, a grade C or 5 or equivalent in a foreign language (other than Ancient Greek, Biblical Hebrew or Latin) is required. UCL provides opportunities to meet the foreign language requirement following enrolment, further details at: www.ucl.ac.uk/ug-reqs

IB DIPLOMA

Standard Offer: 38 points. A total of 18 points in three higher level subjects including Mathematics and Physics at grade 6, with no score below 5.

Contextual Offer: 36 points. A total of 17 points in three higher level subjects including Mathematics and Physics at grade 6, with no score below 5.

CONTEXTUAL OFFERS – ACCESS UCL SCHEME

As part of our commitment to increasing participation from underrepresented groups, students may be eligible for a contextual offer as part of the Access UCL scheme. For more information see www.ucl.ac.uk/prospectus

OTHER QUALIFICATIONS

UCL considers a wide range of UK and international qualifications for entry into its undergraduate programmes. Full details are given at: www.ucl.ac.uk/otherquals

UNDERGRADUATE PREPARATORY CERTIFICATES (International foundation courses)

UCL Undergraduate Preparatory Certificates (UPCs) are intensive one-year foundation courses for international students of high academic potential who are aiming to gain access to undergraduate degree programmes at UCL and other top UK universities.

Typical UPC students will be high achievers in a 12-year school system which does not meet the standard required for direct entry to UCL.

For more information see: www.ucl.ac.uk/upc.

TUITION FEES

The fees indicated are for undergraduate entry in the 2019/20 academic year. The UK/EU fees shown are for the first year of the programme at UCL only. Fees for future years may be subject to an inflationary increase. The Overseas fees shown are the fees that will be charged to 2019/20 entrants for each year of study on the programme, unless otherwise indicated below.

- **UK & EU:** £9,250 (2019/20)
- **Overseas:** £26,740 (2019/20)

Full details of UCL's tuition fees, tuition fee policy and potential increases to fees can be found on the UCL Students website.

Additional costs

You will require the approved model of calculator for use in exams. For details please see the Exams and Assessment page of the UCL website. There are some optional activities in which you may like to participate that incur an additional cost, for example membership of the Student Physics Society, or the department's annual weekend away at Cumberland Lodge. If you are concerned by potential additional costs on t

FUNDING

Various funding options are available, including student loans, scholarships and bursaries. UK students whose household income falls below a certain level may also be eligible for a non-repayable bursary or for certain scholarships. Please see the Fees and funding pages for more details.

CONTACT

Professor Philip Jones

Email: physast-admissions@ucl.ac.uk

Telephone:

Department: Physics and Astronomy

Disclaimer

This information is for guidance only. It should not be construed as advice nor relied upon and does not form part of any contract. For more information on UCL’s degree programmes please see the UCL Undergraduate Prospectus at www.ucl.ac.uk/prospectus