ASTROPHYSICS MSci / UCAS CODE: F511
2020 ENTRY

www.ucl.ac.uk/prospectus
Astrophysics MSci /

This four-year programme offers an additional year of study on top of the Astrophysics BSc, during which students have the opportunity to specialise further by taking advanced optional modules, and undertaking a research project.

Key information

Programme starts
September 2020

Location
London, Bloomsbury

Degree benefits

// The programme is accredited by the Institute of Physics (IOP) and includes the very latest developments and discoveries in the field, based on our highly rated research.

// Collaborative links with both industry and international research laboratories provide insight into the practical application of your studies.

// You will undertake practical work at the UCL (UCLO) and benefit from our close association with the Royal Astronomical Society.

Accreditation

This programme is accredited by the Institute of Physics. Holders of accredited degrees can follow a route to Institute of Physics membership and the Chartered Physicist (CPhys) professional qualification. Graduates of accredited Integrated Master’s (MPhys or MSci) degrees have fulfilled the educational requirements for CPhys status, while graduates of accredited Bachelor’s (BSc) degrees have partially fulfilled these requirements.

Degree structure

In each year of your degree you will take a number of individual modules, normally valued at 15 or 30 credits, adding up to a total of 120 credits for the year. Modules are assessed in the academic year in which they are taken. The balance of compulsory and optional modules varies from programme to programme and year to year. A 30-credit module is considered equivalent to 15 credits in the European Credit Transfer System (ECTS).

Compulsory modules in the first two years provide a grounding in mathematics and classical and quantum physics. You will also undertake modules which build up an increasing exposure to topics in astronomy and astrophysics. This starts in the first year with compulsory modules in Physics of the Universe and Practical Astronomy.

This is followed in the second year by Astrophysical Processes and Practical Astrophysics, leading into core third-year modules in Interstellar Physics, Physical Cosmology, and Astronomical Spectroscopy.

The third year also provides for optional modules to further enhance and enrich your knowledge of astrophysics topics.

The fourth year comprises a compulsory research project in astrophysics, and a number of optional modules, generally chosen from subjects in the relevant degree speciality. A wide range of modules is available, usually some taught by staff from other University of London colleges.

YEAR ONE

Core or compulsory module(s)

// Year 1: All first-year modules are compulsory – 120 credits at Level 4 in total
// PHAS0003 Practical Skills 1A (Astronomy) (Level 4) 15 credits
// PHAS0004 Atoms, Stars and the Universe (Level 4) 15 credits
// PHAS0005 Waves, Optics and Acoustics (Level 4) 15 credits
// PHAS0006 Thermal Physics and the Properties of Matter (Level 4) 15 credits
// PHAS0007 Practical Physics and Computing 1 (Level 4) 15 credits
// PHAS0009 Mathematical Methods I (Level 4) 15 credits
// PHAS0010 Classical Mechanics (Level 4) 15 credits
// PHAS0017 Developing Effective Communications 1 (non-credit, but will appear in student's transcript)

Optional modules

// All first-year modules are compulsory.

YEAR TWO

Core or compulsory module(s)

// Year 2: 120 credits at Level 5 in total
// Compulsory modules (105 credits)
// PHAS0021 Electricity and Magnetism (Level 5) 15 credits
// PHAS0018 Astrophysical Processes: Nebulae to Stars (Level 5) 15 credits
// PHAS0019 Planetary Science (Level 5) 15 credits
// PHAS0020 Practical Astrophysics and Computing (Level 5) 15 credits
// PHAS0022 Quantum Physics (Level 5) 15 credits
// PHAS0024 Statistical Physics of Matter (Level 5) 15 credits
// PHAS0025 Mathematical Methods II (Level 5) 15 credits
// PHAS0035 Developing Effective Communications 2 (non-credit, but will appear in student's transcript)

Optional modules

// You will select 15 credits in total from options that may include the following (choices must be approved by your Programme Tutor)
// XBKB0023 Astrobiology (Level 5) 15 credits
// MATH0043 Mathematics for Physics and Astronomy (Level 5) 15 credits
// PHAS0027 Environmental Physics (Level 5) 15 credits
YEAR THREE

Core or compulsory module(s)

- Year 3 - 120 credits (at least 90 credits at Level 6)
- Compulsory modules (75 credits)
 - PHAS0036 The Physics of Stars (Level 6) 15 credits
 - PHAS0037 Physical Cosmology Level 6) 15 credits
 - PHAS0043 Practical Astronomy 1 – Techniques Level 6) 15 credits
 - PHAS0046 Interstellar Physics Level 6) 15 credits
 - PHAS0047 Astronomical Spectroscopy Level 6) 15 credits

Optional modules

- You will select one of the following
 - PHAS0044 Practical Astronomy 2 Applications (Level 6) 15 credits
 - PHAS0113 Astrophysics Group Project (Level 6) 15 credits (module code to be confirmed)
- You will select 30 credits in total from options that may include the following (choices must be approved by your Programme Tutor)
 - GEOLO022 Physics of Oceans, Ice Sheets and Climate (Level 6) 15 credits
 - PHAS0038 Electromagnetic Theory (Level 6) 15 credits
 - PHAS0040 Nuclear and Particle Physics (Level 6) 15 credits
 - PHAS0042 Quantum Mechanics (Level 6) 15 credits
 - PHAS0050 Energy and Climate (Level 6) 15 credits
 - PHAS0049 Theory of Dynamical Systems (Level 6) 15 credits
 - PHAS0056 Scientific Computing Using Object Oriented Languages (Level 6) 15 credits
 - PHAS0057 Physics of the Earth (Level 6) 15 credits
 - MATH0025 Mathematics for General Relativity (Level 6) 15 credits

FINAL YEAR

Core or compulsory module(s)

- Year 4: 120 credits at level 7 in total
- Compulsory module (45 credits)
 - PHAS0096 Astrophysics Project (45 credits) (Level 7)

Optional modules

- You will select 75 credits in total from options that may include the following (choices must be approved by your Programme Tutor)
 - PHAS0063 Planetary Atmospheres (Level 7) 15 credits
 - PHAS0064 Solar Physics (Level 7) 15 credits
 - PHAS0088 High Energy Astrophysics (Level 7) 15 credits
 - PHAS0085 Galaxy dynamics, formation and evolution (Level 7) 15 credits
 - PHAS0088 Physics of Exoplanets (Level 7) 15 credits
 - MATH0179 Cosmology (Level 7) 15 credits
- Intercollegiate taught courses

Your learning

Teaching is delivered through lectures, laboratory (and as appropriate, observatory) practical sessions, and supervised problem-solving tutorials. These tutorials are designed to deal with lecture-based questions, enlarge on topics addressed in lectures, and allow clarification and in-depth discussion of new concepts.

Assessment

Assessment will normally involve end-of-year examinations, and an element of assessed coursework. For practical work you will be continuously assessed.

Your career

Your scientific training will equip you with an understanding of mathematics, and of physical principles and techniques, as well as transferable skills in analysis, rational argument and innovative problem-solving. Surveys by the Institute of Physics indicate that physicists' versatility is welcomed by a wider range of professions than any other subject.

Around half our graduates choose to pursue further study for an MSc or PhD. A PhD opens up the possibility of an academic or research career in a university or research institute. Alternatively, like many of our graduates, you may consider employment in research, design, development, computing, finance, marketing and teaching, among others.

Your application

Application for admission should be made through UCAS (the Universities and Colleges Admissions Service). Applicants currently at school or college will be provided with advice on the process; however, applicants who have left school or who are based outside the United Kingdom may obtain information directly from UCAS.

In addition to the subjects and grades specified in the qualifying examinations, we are also looking for evidence of self-motivation and an enthusiastic interest in the subject. This may be demonstrated through paid or voluntary work experience, academic project work, or your interests and hobbies beyond the school curriculum.

Your application will be carefully assessed based on your UCAS form and reference. If you are made an offer, you will be invited to a Physics Offer Holder’s Day. This will include presentations, a tour of facilities and an opportunity to meet current students and staff members. Attendance is strongly recommended as we cannot provide private tours of the department at the moment.
Entry requirements

A LEVELS
Standard Offer: AAA. Mathematics and Physics required.
Contextual Offer: AAB. A in Mathematics and Physics required.

GCSE
English Language and Mathematics at grade C or 5. For UK-based students, a grade C or 5 or equivalent in a foreign language (other than Ancient Greek, Biblical Hebrew or Latin) is required. UCL provides opportunities to meet the foreign language requirement following enrolment, further details at: www.ucl.ac.uk/ug-reqs

IB DIPLOMA
Standard Offer: 38 points. A total of 18 points in three higher level subjects including Mathematics and Physics at grade 6, with no score below 5.
Contextual Offer: 36 points. A total of 17 points in three higher level subjects including Mathematics and Physics at grade 6, with no score below 5.

CONTEXTUAL OFFERS – ACCESS UCL SCHEME
As part of our commitment to increasing participation from underrepresented groups, students may be eligible for a contextual offer as part of the Access UCL scheme. For more information see www.ucl.ac.uk/ug-reqs

OTHER QUALIFICATIONS
UCL considers a wide range of UK and international qualifications for entry into its undergraduate programmes. Full details are given at: www.ucl.ac.uk/otherquals

UNDERGRADUATE PREPARATORY CERTIFICATES (International foundation courses)
UCL Undergraduate Preparatory Certificates (UPCs) are intensive one-year foundation courses for international students of high academic potential who are aiming to gain access to undergraduate degree programmes at UCL and other top UK universities.

Typical UPC students will be high achievers in a 12-year school system which does not meet the standard required for direct entry to UCL.

For more information see: www.ucl.ac.uk/upc.

TUITION FEES
The fees indicated are for undergraduate entry in the 2020/21 academic year. The UK/EU fees shown are for the first year of the programme at UCL only. Fees for future years may be subject to an inflationary increase. The Overseas fees shown are the fees that will be charged to 2020/21 entrants for each year of study on the programme, unless otherwise indicated below.

// UK & EU: £9,250 (2020/21)
// Overseas: £28,610 (2020/21)

Full details of UCL’s tuition fees, tuition fee policy and potential increases to fees can be found on the UCL Students website.

Additional costs
You will require the approved model of calculator for use in exams. For details please see the Exams and Assessment page of the UCL website. There are some optional activities in which you may like to participate that incur an additional cost, for example membership of the Student Physics Society, or the department’s annual weekend away at Cumberland Lodge. If you are concerned by potential additional costs on this programme, please get in touch with us.

FUNDING
Various funding options are available, including student loans, scholarships and bursaries. UK students whose household income falls below a certain level may also be eligible for a non-repayable bursary or for certain scholarships. Please see the Fees and funding pages for more details.

CONTACT
Professor Philip Jones
Email: PhysAst.Admissions@ucl.ac.uk
Telephone: Physics and Astronomy

Brexit
For up-to-date information relating to specific key questions following the UK’s decision to leave the EU, please refer to: www.ucl.ac.uk/brexit

Disclaimer
This information is for guidance only. It should not be construed as advice nor relied upon and does not form part of any contract. For more information on UCL’s degree programmes please see the UCL Undergraduate Prospectus at www.ucl.ac.uk/prospectus