CHEMICAL PROCESS ENGINEERING MSc / 2019/20 ENTRY

www.ucl.ac.uk/graduate/
Process engineering often involves close collaboration between engineers and scientists from a variety of disciplines. The MSc in Chemical Process Engineering at UCL is specifically designed to facilitate this collaboration and provides graduates from a variety of engineering and science disciplines with the advanced training required to enter the chemical or biochemical industries.

Degree summary

Students will develop knowledge of core chemical engineering principles and applications as well as teamwork and communication skills. Moreover, they will learn how to:
1. be creative and innovative in solving problems and in designing processes,
2. use appropriate mathematical methods and scientific principles as a tool for solving complex problems,
3. analyse and interpret data and, when necessary, designing experiments to gain new data, and
4. retrieve, analyse and use information from a wide range of sources.

Additional information to that reported below about this MSc programme can be found here.

UCL Chemical Engineering, situated in the heart of London, is one of the top-rated departments in the UK, being internationally renowned for its outstanding research.

The programme is the first of its kind in the UK and is accredited by the Institution of Chemical Engineers (IChemE) as meeting the IChemE’s requirements for Further Learning to Master’s Level. This recognition fulfils an important academic qualification for MSc graduates with suitable first degrees in eventually becoming Chartered Chemical Engineer or Incorporated Chemical Engineer (see further information on the IChemE website).

The programme is delivered through a combination of lecture-based courses, individual and group activities, assessed coursework and tutorial sessions. Advanced design or research projects are provided to extend knowledge and understanding of the topics studied and to encourage critical thinking. Creativity and innovation is encouraged on the demonstration of sound judgement and assumptions. Assessment is mainly through examinations, coursework and reports.

Accreditation

The programme offers three routes with different compulsory and optional modules. The routes are 1) Advanced Chemical Engineering Route, 2) Design Route and 3) Research Route. Routes 1 and 2 are accredited by the IChemE.

Mode and location

Mode: Full-time: 1 year
Location: London, Bloomsbury

Students undertake modules to the value of 180 credits. The programme offers three routes with different compulsory and optional modules:

- **Advanced Chemical Engineering Route** (accredited by the IChemE at F-Standard)
- **Design Route** (accredited by the IChemE at B-Standard)
- **Research Route**

Please note that the list of modules given here is indicative. This information is published a long time in advance of enrolment and module content and availability is subject to change.

Compulsory modules

Academic year 2019/20

- **Advanced Chemical Engineering Route:** Three compulsory taught modules (45 credits) and a dissertation (60 credits).
- **Design Route:** Seven compulsory taught modules (105 credits) and a dissertation (60 credits).
- **Research Route:** Two compulsory taught modules (30 credits) and a dissertation (60 credits).

The list of modules and module descriptions still need to be confirmed. The list of modules and the module descriptions for the current academic year can be found at the following link:

Optional modules

Academic year 2019/20

- **Advanced Chemical Engineering Route:** Five optional taught modules (75 credits).
- **Design Route:** One optional taught modules (15 credits).
- **Research Route:** Six optional taught modules (90 credits).

The list of modules and module descriptions still need to be confirmed. The list of modules and the module descriptions for the current academic year can be found at the following link:

Dissertation/Report

All students undertake either a research project or a design project, which culminates in a project report and an oral examination.
Your career

Upon completion, our graduates can expect to play a major role in developing the technologies that make available most of the things that we use in everyday life and provide the expertise and technology to enhance our health and standard of living. These activities may involve the development of new materials, food processing, water treatment, pharmaceuticals, transport and energy resources as well as being at the frontline, addressing present environmental issues such as climate change.

Typical destinations of recent graduates include: Amec Process and Energy, British Petroleum, Royal Dutch Shell, National Grid, Health & Safety Executive. Career profiles of some of our recent MSc graduates are available on our website.

Employability

Students gain in-depth knowledge of core chemical engineering subjects and of the advanced use of computers in process design, operation and management. They receive thorough training in hazard identification, quantification and mitigation, as well as in risk management and loss prevention, and also learn how to design advanced energy systems, with emphasis on sustainability, energy efficiency and the use of renewable energy sources. Students learn how to make decisions under uncertain scenarios and with limited available data and receive training on how to plan, conduct and manage a complex (design or research) project.
Entry requirements

A minimum of an upper second-class Bachelor’s degree in Chemical Engineering or a cognate discipline (such as Mechanical or Environmental Engineering, Chemistry and Physics) from a UK university or an overseas qualification of an equivalent standard.

English language proficiency level

If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.

The level of English language proficiency for this programme is: Standard.

Information about the evidence required, acceptable qualifications and test providers is provided at: www.ucl.ac.uk/graduate/english-requirements

Your application

Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

When we assess your application we would like to learn:

- why you want to study Chemical Process Engineering at graduate level
- why you want to study Chemical Process Engineering at UCL
- what particularly attracts you to this programme
- how your academic, professional and personal background meets the demands of this programme
- where you would like to go professionally with your degree

Together with essential academic requirements, the personal statement is your opportunity to illustrate whether your reasons for applying to this programme match what the programme will deliver.

There is an application processing fee for this programme of £75 for online applications and £100 for paper applications. Further information can be found at: www.ucl.ac.uk/prospective-students/graduate/taught/application.

FEES AND FUNDING 2019/20 ENTRY

|| UK: £12,750 (FT)
| EU: £12,750 (FT)
| Overseas: £27,470 (FT)

The tuition fees shown are for the year indicated above. Fees for subsequent years may increase or otherwise vary. Further information on fee status, fee increases and the fee schedule can be viewed on the UCL Students website.

All full time students are required to pay a fee deposit of £2,000 for this programme. All part-time students are required to pay a fee deposit of £1,000.

Full details of funding opportunities can be found on the UCL Scholarships website: www.ucl.ac.uk/scholarships

APPLICATION DEADLINE

All applicants: 26 July 2019

Details on how to apply are available on the website at: www.ucl.ac.uk/graduate/apply

CONTACT

Dr Luca Mazzei

Email: pg-chemeng@ucl.ac.uk

Telephone: +44 (0)20 7679 4328

EU referendum

For up-to-date information relating to specific key questions following the UK’s decision to leave the EU, please refer to www.ucl.ac.uk/brexit