Medical Physics and Biomedical Engineering

Treatment with Ionising Radiation (MPHY0038)

Description
The course is intended to provide the basic knowledge which a medical physicist working in a radiotherapy department would be expected to have.

This includes:
- a knowledge of how quantities of radiation and radiation doses are measures, including the theory of radiation detectors and dosemeters;
- a knowledge of how cells are affected by exposure to ionising radiation and the mechanisms involved;
- knowledge of how the treatment plan for a patient is developed and carried out;
- a knowledge of the risks involved in the use of ionising radiation;
- and the concept of risk and radiation protection.

Key information

<table>
<thead>
<tr>
<th>Year</th>
<th>2018/19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit value</td>
<td>15 (150 study hours)</td>
</tr>
<tr>
<td>Delivery</td>
<td>UG L6, Campus-based</td>
</tr>
<tr>
<td>Reading List</td>
<td>View on UCL website</td>
</tr>
<tr>
<td>Tutor</td>
<td>Prof Gary Royle</td>
</tr>
<tr>
<td>Term</td>
<td>Term 1</td>
</tr>
<tr>
<td>Timetable</td>
<td>View on UCL website</td>
</tr>
</tbody>
</table>

Assessment

- Group coursework: 40%
- Written examination (main exam period): 60%

Find out more

For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of December 2018. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.
Medical Physics and Biomedical Engineering

Treatment with Ionising Radiation (MPHY0038)

Description
The course is intended to provide the basic knowledge which a medical physicist working in a radiotherapy department would be expected to have.

This includes:
- a knowledge of how quantities of radiation and radiation doses are measures, including the theory of radiation detectors and dosemeters;
- a knowledge of how cells are affected by exposure to ionising radiation and the mechanisms involved;
- knowledge of how the treatment plan for a patient is developed and carried out;
- a knowledge of the risks involved in the use of ionising radiation;
- and the concept of risk and radiation protection.

Key information

Year
2018/19

Credit value
15 (150 study hours)

Delivery
UGM L7, Campus-based

Reading List
View on UCL website

Tutor
Prof Adam Gibson

Term
Term 1

Timetable
View on UCL website

Assessment
- Written examination (main exam period): 50%
- Group coursework: 50%

Find out more
For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of December 2018. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.