Medical Electronics and Neural Engineering (MPHY0037)

Description

This course brings together material from engineering, physics and physiology which is relevant to situations in which electronic devices are in direct contact with the body.

Body contact is common in clinical practice with medical devices being used for recording bipotentials, such as ECG, and for stimulation.

The course focuses on interaction with the nervous system.

This is relevant to rehabilitation, intensive care, clinical neurophysiology, neuroprosthetics, etc.

It should be useful:

- to medical students who will encounter these applications in clinical practice;
- to students who intend to go on to biomedical research;
- to engineering students who go on to specify, design, test or use clinical electrical equipment.

Usually, there are about equal numbers from engineering, the sciences, and intercalated medical students;

Key information

- **Year**: 2018/19
- **Credit value**: 15 (150 study hours)
- **Delivery**: UG L6, Campus-based
- **Reading List**: [View on UCL website](https://www.ucl.ac.uk)
- **Tutor**: Prof Nick Donaldson
- **Term**: Term 2
- **Timetable**: [View on UCL website](https://www.ucl.ac.uk)

Assessment

- Written examination (main exam period): 80%
- Coursework: 20%

Find out more

For more information about the department, programmes, relevant open days and to browse other modules, visit [ucl.ac.uk](https://www.ucl.ac.uk)

Disclaimer: All information correct as of December 2018. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.
Medical Electronics and Neural Engineering (MPHY0037)

Description
This course brings together material from engineering, physics and physiology which is relevant to situations in which electronic devices are in direct contact with the body.

Body contact is common in clinical practice with medical devices being used for recording bipotentials, such as ECG, and for stimulation.

The course focusses on interaction with the nervous system.

This is relevant to rehabilitation, intensive care, clinical neurophysiology, neuroprosthetics, etc.

It should be useful:

- to medical students who will encounter these applications in clinical practice;
- to students who intend to go on to biomedical research;
- to engineering students who go on to specify, design, test or use clinical electrical equipment.

Usually, there are about equal numbers from engineering, the sciences, and intercalated medical students;

Key information

<table>
<thead>
<tr>
<th>Year</th>
<th>2018/19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit value</td>
<td>15 (150 study hours)</td>
</tr>
<tr>
<td>Delivery</td>
<td>PGT L7, Campus-based</td>
</tr>
<tr>
<td>Reading List</td>
<td>View on UCL website</td>
</tr>
<tr>
<td>Tutor</td>
<td>Prof Nick Donaldson</td>
</tr>
<tr>
<td>Term</td>
<td>Term 2</td>
</tr>
<tr>
<td>Timetable</td>
<td>View on UCL website</td>
</tr>
</tbody>
</table>

Assessment

- Written examination (main exam period): 70%
- Coursework: 30%

Find out more

For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of December 2018. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.
Medical Physics and Biomedical Engineering

Medical Electronics and Neural Engineering (MPHY0037)

Description

This course brings together material from engineering, physics and physiology which is relevant to situations in which electronic devices are in direct contact with the body.

Body contact is common in clinical practice with medical devices being used for recording bipotentials, such as ECG, and for stimulation.

The course focusses on interaction with the nervous system.

This is relevant to rehabilitation, intensive care, clinical neurophysiology, neuroprosthetics, etc.

It should be useful:

to medical students who will encounter these applications in clinical practice;

to students who intend to go on to biomedical research;

to engineering students who go on to specify, design, test or use clinical electrical equipment.

Usually, there are about equal numbers from engineering, the sciences, and intercalated medical students;

Key information

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2018/19</td>
</tr>
<tr>
<td>Credit value</td>
<td>15 (150 study hours)</td>
</tr>
<tr>
<td>Delivery</td>
<td>UGM L7, Campus-based</td>
</tr>
<tr>
<td>Reading List</td>
<td>View on UCL website</td>
</tr>
<tr>
<td>Tutor</td>
<td>Prof Nick Donaldson</td>
</tr>
<tr>
<td>Term</td>
<td>Term 2</td>
</tr>
<tr>
<td>Timetable</td>
<td>View on UCL website</td>
</tr>
</tbody>
</table>

Assessment

- Written examination (main exam period): 70%
- Coursework: 30%

Find out more

For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of December 2018. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.