Biomedical Ultrasound (MPHY0018)

Description
The purpose of this course is to provide a complete introduction to the physics and clinical application of biomedical ultrasound. Clinically, ultrasound is already the most widely used imaging modality, and its application to therapy has grown rapidly over the last decade. Students who take this course will have a solid grounding in ultrasound physics and instrumentation to take into research or clinical work. Objectives To impart knowledge and understanding on the basic physical principles of ultrasound imaging and therapy To impart knowledge and understanding on the instrumentation used by these techniques To impart knowledge on the clinical applications of these techniques To impart knowledge and understanding on the biological hazards, safe levels and methods of measurement of ultrasound fields

Key information
- Year: 2019/20
- Credit value: 15 (150 study hours)
- Delivery: UG L6, Campus-based
- Reading List: View on UCL website
- Tutor: Dr Ben Cox
- Term: Term 1
- Timetable: View on UCL website

Assessment
- Written examination (main exam period): 80%
- Coursework: 20%

Find out more
For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of December 2018. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.
Biomedical Ultrasound (MPHY0018)

Description
The purpose of this course is to provide a complete introduction to the physics and clinical application of biomedical ultrasound. Clinically, ultrasound is already the most widely used imaging modality, and its application to therapy has grown rapidly over the last decade. Students who take this course will have a solid grounding in ultrasound physics and instrumentation to take into research or clinical work. Objectives To impart knowledge and understanding on the basic physical principles of ultrasound imaging and therapy To impart knowledge and understanding on the instrumentation used by these techniques To impart knowledge on the clinical applications of these techniques To impart knowledge and understanding on the biological hazards, safe levels and methods of measurement of ultrasound fields.

Key information
- **Year**: 2019/20
- **Credit value**: 15 (150 study hours)
- **Delivery**: PGT L7, Campus-based
- **Reading List**: View on UCL website
- **Tutor**: Dr Ben Cox
- **Term**: Term 1
- **Timetable**: View on UCL website

Assessment
- Written examination (main exam period): 80%
- Coursework: 20%

Find out more
For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk
Biomedical Ultrasound (MPHY0018)

Description
The purpose of this course is to provide a complete introduction to the physics and clinical application of biomedical ultrasound. Clinically, ultrasound is already the most widely used imaging modality, and its application to therapy has grown rapidly over the last decade. Students who take this course will have a solid grounding in ultrasound physics and instrumentation to take into research or clinical work.

Objectives
To impart knowledge and understanding on the basic physical principles of ultrasound imaging and therapy
To impart knowledge and understanding on the instrumentation used by these techniques
To impart knowledge on the clinical applications of these techniques
To impart knowledge and understanding on the biological hazards, safe levels and methods of measurement of ultrasound fields

Key information
- Year: 2019/20
- Credit value: 15 (150 study hours)
- Delivery: UGM L7, Campus-based
- Reading List: View on UCL website
- Tutor: Dr Ben Cox
- Term: Term 1
- Timetable: View on UCL website

Assessment
- Written examination (main exam period): 80%
- Coursework: 20%

Find out more
For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of December 2018. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.