Materials and Mechanics (MPHY0003)

Description
The purpose of this module is to provide students with general knowledge of statics, dynamics and materials such that they can apply it in a range of real life situations, with focus on the biomedical engineering applications. Upon completion of this module students should be able to:
1. Obtain free body diagrams of various systems; 2. Analyse forces in cantilever and simple supported beams and obtain shear stress, bending moment and maximum bending moment; 3. Analyse simple structures using the method of the joints and the method of the sections and obtain the ground reactions and internal forces; 4. Describe material testing techniques, and analyse the stress versus strain curve; 5. Define and apply terminology and relationships related to 2nd moment of mass, 2nd moment of area and radius of gyration; 6. Compare different materials according to a wide range of properties, select a given material(s) for a specific application, and discuss the reasons and implications for their choice; 7. Describe different failure modes of materials; 8. Define and apply terminology and relationships related to Newton Laws, translational and rotational motion, work, energy, momentum and impulse; 9. Understand the principles and need of Finite Element Analysis, and analyse simple shapes with the relevant software; 10. Describe the use of the Instron ElectroPuls E3000 equipment, operate its software to set up customized static and dynamic tests, and analyse the results of various endurance and fatigue tests; 11. Apply knowledge of mechanics and materials to biomedical applications;

Key information
- Year: 2019/20
- Credit value: 15 (150 study hours)
- Delivery: UG L4, Campus-based
- Reading List: View on UCL website
- Tutor: Dr Pilar Garcia Souto
- Term: Term 2
- Timetable: View on UCL website

Assessment
- Written examination (main exam period): 60%
- Coursework: 40%

Find out more
For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of August 2019. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.