Supervised Learning (COMP0078)

Description

Aims:
This module covers supervised approaches to machine learning (ML). Our goal will be to gain intuition about a number of ML methodologies, how they function, where they perform well, poorly and so forth. These intuitions will be given as mathematical results which will be supported by proof.

Learning outcomes:
Gain in-depth familiarity with various classical and contemporary supervised learning algorithms, understand the underlying limitations and principles that govern learning algorithms and ways of assessing and improving their performance.

Content:
The course consists of both foundational topics for supervised learning such as Linear Regression, Nearest Neighbours and Kernelisation as well contemporary research areas such as multi-task learning and optimisation via proximal methods. In a given year topics will be drawn non-exclusively from the following:
- Nearest Neighbours;
- Linear Regression;
- Kernels and Regularisation;
- Support Vector Machines;
- Gaussian Processes;
- Decision Trees;
- Ensemble Learning;
- Sparsity Methods;
- Multi-task Learning;
- Proximal Methods;
- Semi-supervised Learning;
- Neural Networks;
- Matrix Factorization;
- Online Learning;
- Statistical Learning Theory;

Key information

Year
2019/20

Credit value
15 (150 study hours)

Delivery
PGT L7, Campus-based

Reading List
View on UCL website

Tutor
Dr Mark Herbster

Term
Term 1

Timetable
View on UCL website

Assessment

Find out more
For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of June 2019. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.
In order to be eligible to select this module, a student must be registered on a programme for which it is a formally-approved option or elective choice AND must have high competency with Multivariable Calculus, Probability and Combinatorics, and Linear Algebra such that they can reprove basic results as well as novel results.

The module is mathematical in nature; as such there is significant proportion devoted to formal theorems and proofs.

Self-Assessment Test:
Students should take the self-test available here: www.cs.ucl.ac.uk/SAT/SAT-COMP0078.pdf to assess their ability for this module.
Supervised Learning (COMP0078)

Description

Aims:
This module covers supervised approaches to machine learning (ML). Our goal will be to gain intuition about a number of ML methodologies, how they function, where they perform well, poorly and so forth. These intuitions will be given as mathematical results which will be supported by proof.

Learning outcomes:
Gain in-depth familiarity with various classical and contemporary supervised learning algorithms, understand the underlying limitations and principles that govern learning algorithms and ways of assessing and improving their performance.

Content:
The course consists of both foundational topics for supervised learning such as Linear Regression, Nearest Neighbours and Kernelisation as well contemporary research areas such as multi-task learning and optimisation via proximal methods. In a given year topics will be drawn non-exclusively from the following:
- Nearest Neighbours;
- Linear Regression;
- Kernels and Regularisation;
- Support Vector Machines;
- Gaussian Processes;
- Decision Trees;
- Ensemble Learning;
- Sparsity Methods;
- Multi-task Learning;
- Proximal Methods;
- Semi-supervised Learning;
- Neural Networks;
- Matrix Factorization;
- Online Learning;
- Statistical Learning Theory;

Key information

Year 2019/20
Credit value 15 (150 study hours)
Delivery UGM L7, Campus-based
Reading List [View on UCL website]
Tutor Dr Mark Herbster
Term Term 1
Timetable [View on UCL website]

Assessment

Find out more

For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk
In order to be eligible to select this module, a student must be registered on a programme for which it is a formally-approved option or elective choice AND must have high competency with Multivariable Calculus, Probability and Combinatorics, and Linear Algebra such that they can reprove basic results as well as novel results.

The module is mathematical in nature; as such there is significant proportion devoted to formal theorems and proofs.

Self-Assessment Test:
Students should take the self-test available here: www.cs.ucl.ac.uk/SAT/SAT-COMP0078.pdf to assess their ability for this module.