Computer Graphics (COMP0027)

Description

Aims:
To introduce the fundamental concepts of 3D computer graphics and give the students all the knowledge needed for creating an image of a virtual world from first principles.

Learning outcomes:
On successful completion of the module, a student will be able to:
1. define a virtual world and create images of it;
2. write a basic ray tracer, and use a graphics library such as OpenGL (or equivalent);

Content:
- Introduction:
 - The painters method;
- Creating an image using ray tracing:
 - Ray casting using a simple camera;
 - Local illumination;
 - Global illumination with recursive ray tracing;
- Specifying a general camera:
 - World / image coordinates;
 - Creation of an arbitrary camera;
 - Ray tracing with an arbitrary camera;
- Constructing a scene:
 - Scene hierarchy;
 - Transformations of objects / rays;
 - Other modelling techniques;
- Acceleration Techniques:
 - Bounding volumes;
 - Space subdivision;
- From ray tracing to projecting polygons:
 - Graphics pipeline;
 - Transforming the polygons to image space;
 - Sutherland Hodgman clipping;

Key information

Year 2019/20
Credit value 15 (150 study hours)
Delivery UG L6, Campus-based
Reading List [View on UCL website]
Tutor Dr Tobias Ritschel
Term Term 1
Timetable [View on UCL website]

Assessment

Find out more

For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of June 2019. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.
-Scan conversion;
-Z-buffer;
-Interpolated shading;
-Texture mapping;
-Back face culling;

Shadows:
-Shadow volumes;
-Shadow buffer;
-Shadow mapping;
-Soft shadows;

The nature of light:
-Transport theory, Radiance, luminance, radiosity;
-The radiance equation;
-Photon mapping;
-Monte Carlo integration;

Parametric surfaces:
-Bezier Curves;
-B-Splines Curves;

Requisites:
In order to be eligible to select this module, a student must be registered on a programme for which it is a formally-approved option or elective choice AND must have EITHER (i) passed BSc/ MEng Computer Science (Years 1 and 2) at UCL; OR (ii) passed MEng Mathematical Computation (Years 1 and 2) at UCL.
Computer Graphics (COMP0027)

Description
Aims:
To introduce the fundamental concepts of 3D computer graphics and give the students all the knowledge needed for creating an image of a virtual world from first principles.

Learning outcomes:
On successful completion of the module, a student will be able to:
1. define a virtual world and create images of it;
2. write a basic ray tracer, and use a graphics library such as OpenGL (or equivalent);

Content:
Introduction:
- The painters method;

Creating an image using ray tracing:
- Ray casting using a simple camera;
- Local illumination;
- Global illumination with recursive ray tracing;

Specifying a general camera:
- World / image coordinates;
- Creation of an arbitrary camera;
- Ray tracing with an arbitrary camera;

Constructing a scene:
- Scene hierarchy;
- Transformations of objects / rays;
- Other modelling techniques;

Acceleration Techniques:
- Bounding volumes;
- Space subdivision;

From ray tracing to projecting polygons:
- Graphics pipeline;
- Transforming the polygons to image space;
- Sutherland Hodgman clipping;

Key information
Year: 2019/20
Credit value: 15 (150 study hours)
Delivery: PGT L7, Campus-based
Reading List: View on UCL website
Tutor: Dr Tobias Ritschel
Term: Term 1
Timetable: View on UCL website

Assessment
Written examination (main exam period): 75%
Coursework: 25%

Find out more
For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of June 2019. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.
-Scan conversion;
-Z-buffer;
-Interpolated shading;
-Texture mapping;
-Back face culling;

Shadows:
-Shadow volumes;
-Shadow buffer;
-Shadow mapping;
-Soft shadows;

The nature of light:
-Transport theory, Radiance, luminance, radiosity;
-The radiance equation;
-Photon mapping;
-Monte Carlo integration;

Parametric surfaces:
-Bezier Curves;
-B-Splines Curves;

Requisites:
In order to be eligible to select this module, a student must be registered on a programme for which it is a formally-approved option or elective choice AND must have EITHER (i) passed BSc/ MEng Computer Science (Years 1 and 2) at UCL; OR (ii) passed MEng Mathematical Computation (Years 1 and 2) at UCL.