Computer Graphics (COMP0027)

Description

Aims:
To introduce the fundamental concepts of 3D computer graphics and give the students all the knowledge needed for creating an image of a virtual world from first principles.

Learning outcomes:
On successful completion of the module, a student will be able to:

1. define a virtual world and create images of it;
2. write a basic ray tracer, and use a graphics library such as OpenGL (or equivalent);

Content:
Introduction:
- The painters method;
Creating an image using ray tracing:
- Ray casting using a simple camera;
- Local illumination;
- Global illumination with recursive ray tracing;
Specifying a general camera:
- World / image coordinates;
- Creation of an arbitrary camera;
- Ray tracing with an arbitrary camera;
Constructing a scene:
- Scene hierarchy;
- Transformations of objects / rays;
- Other modelling techniques;
Acceleration Techniques:
- Bounding volumes;
- Space subdivision;
From ray tracing to projecting polygons:

Key information

Year: 2019/20
Credit value: 15 (150 study hours)
Delivery: UG L6, Campus-based
Reading List: [View on UCL website]
Tutor: Dr Tobias Ritschel
Term: Term 1
Timetable: [View on UCL website]

Assessment

For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk
• Graphics pipeline;
• Transforming the polygons to image space;
• Sutherland Hodgman clipping;
• Scan conversion;
• Z-buffer;
• Interpolated shading;
• Texture mapping;
• Back face culling;

Shadows:
• Shadow volumes;
• Shadow buffer;
• Shadow mapping;
• Soft shadows;

The nature of light:
• Transport theory, Radiance, luminance, radiosity;
• The radiance equation;
• Photon mapping;
• Monte Carlo integration;

Parametric surfaces:
• Bezier Curves;
• B-Splines Curves;

Requisites:
In order to be eligible to select this module, a student must be registered on a programme for which it is a formally-approved option or elective choice AND must have EITHER (i) passed BSc/MEng Computer Science (Years 1 and 2) at UCL;
OR (ii) passed MEng Mathematical Computation (Years 1 and 2) at UCL.
Computer Graphics (COMP0027)

Description

Aims:
To introduce the fundamental concepts of 3D computer graphics and give the students all the knowledge needed for creating an image of a virtual world from first principles.

Learning outcomes:
On successful completion of the module, a student will be able to:
1. define a virtual world and create images of it;
2. write a basic ray tracer, and use a graphics library such as OpenGL (or equivalent);

Content:
Introduction:
- The painters method;
Creating an image using ray tracing:
- Ray casting using a simple camera;
- Local illumination;
- Global illumination with recursive ray tracing;
Specifying a general camera:
- World / image coordinates;
- Creation of an arbitrary camera;
- Ray tracing with an arbitrary camera;
Constructing a scene:
- Scene hierarchy;
- Transformations of objects / rays;
- Other modelling techniques;
Acceleration Techniques:
- Bounding volumes;
- Space subdivision;
From ray tracing to projecting polygons:

Key information

Year: 2019/20
Credit value: 15 (150 study hours)
Delivery: PGT L7, Campus-based
Reading List: View on UCL website
Tutor: Dr Tobias Ritschel
Term: Term 1
Timetable: View on UCL website

Assessment

- Written examination (main exam period): 75%
- Coursework: 25%

Find out more

For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of August 2019. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.
• Graphics pipeline;
• Transforming the polygons to image space;
• Sutherland Hodgman clipping;
• Scan conversion;
• Z-buffer;
• Interpolated shading;
• Texture mapping;
• Back face culling;

Shadows:
• Shadow volumes;
• Shadow buffer;
• Shadow mapping;
• Soft shadows;

The nature of light:
• Transport theory, Radiance, luminance, radiosity;
• The radiance equation;
• Photon mapping;
• Monte Carlo integration;

Parametric surfaces:
• Bezier Curves;
• B-Splines Curves;

Requisites:
In order to be eligible to select this module, a student must be registered on a programme for which it is a formally-approved option or elective choice AND must have EITHER (i) passed BSc/MEng Computer Science (Years 1 and 2) at UCL; OR (ii) passed MEng Mathematical Computation (Years 1 and 2) at UCL.