Advanced Materials Processes and Nanotechnology (CENG0030)

Description

Aims:
To give students an understanding of processes involved in the production of novel materials. To provide students with a systematic approach to the selection of material fabrication routes with applications to the biomedical, coating, fine chemical, food, microelectronic and semiconductor industries.

Learning Outcomes:
On completion of this course students are expected to:

- be aware of novel materials and recently developed material processes;
- understand essential concepts in materials science at multiple scales, from the molecules to manufacturing;
- be able to apply fundamental chemical engineering principles (such as transport phenomena, chemical kinetics, thermodynamics) in the design and operation of materials processes involving nanofabrication, templating, self-assembly

Synopsis:
To introduce the concepts of:

- Processes in the electronics industry:
 1. epitaxial & polycrystalline silicon production
 2. silicon doping
 3. microlithography
 4. chemical vapour deposition
 5. physical vapour deposition.
- Soft matter fundamentals & applications: Lipids, proteins, colloids, polymers, emulsions, self-assembly, thin-film processing, templating.
Advanced Materials Processes and Nanotechnology (CENG0030)

Description

Aims:
To give students an understanding of processes involved in the production of novel materials. To provide students with a systematic approach to the selection of material fabrication routes with applications to the biomedical, coating, fine chemical, food, microelectronic and semiconductor industries.

Learning Outcomes:
On completion of this course students are expected to:

- be aware of novel materials and recently developed material processes;
- understand essential concepts in materials science at multiple scales, from the molecules to manufacturing;
- be able to apply fundamental chemical engineering principles (such as transport phenomena, chemical kinetics, thermodynamics) in the design and operation of materials processes involving nanofabrication, templating, self-assembly.

Synopsis:
To introduce the concepts of:

- Processes in the electronics industry:
 1. epitaxial & polycrystalline silicon production
 2. silicon doping
 3. microlithography
 4. chemical vapour deposition
 5. physical vapour deposition.

- Soft matter fundamentals & applications: Lipids, proteins, colloids, polymers, emulsions, self-assembly, thin-film processing, templating.

Key information

Year: 2019/20
Credit value: 15 (150 study hours)
Delivery: UGM L7, Campus-based
Reading List: View on UCL website
Tutor: Dr Michail Stamatakis
Term: Term 2
Timetable: View on UCL website

Assessment

- Written examination (main exam period): 80%
- Coursework: 20%

Find out more

For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk