Fluid Particle Systems (CENG0024)

Description

Aims:
This course is designed to convey the fundamentals of fluidization and crystallization and their applications to industrial scale units and sustainable development.

Learning Outcomes:
On completion, students are expected:

- to be able to formulate realistic differential equation descriptions of multiphase systems;
- to have an understanding of the two-phase nature of gas-solid fluidized beds and of how to apply their basic quantitative features to the design of reactors;
- to be able to apply methods to analyse the characteristics and performance of particulate crystal formation systems and to design crystallization equipment.

Synopsis:

- Crystallization processes and crystallizers. The population balance equation and crystallizer design.

Key information

Year: 2019/20
Credit value: 15 (150 study hours)
Delivery: PGT L7, Campus-based
Reading List: View on UCL website
Tutor: Dr Luca Mazzei
Term: Term 2
Timetable: View on UCL website

Assessment

- Written examination (main exam period): 80%
- Coursework: 20%

Find out more

For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of August 2019. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.
Fluid Particle Systems (CENG0024)

Description

Aims:
This course is designed to convey the fundamentals of fluidization and crystallization and their applications to industrial scale units and sustainable development.

Learning Outcomes:
On completion, students are expected:
- to be able to formulate realistic differential equation descriptions of multiphase systems;
- to have an understanding of the two-phase nature of gas-solid fluidized beds and of how to apply their basic quantitative features to the design of reactors;
- to be able to apply methods to analyse the characteristics and performance of particulate crystal formation systems and to design crystallization equipment.

Synopsis:
- Crystallization processes and crystallizers. The population balance equation and crystallizer design.

Key information

<table>
<thead>
<tr>
<th>Year</th>
<th>2019/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit value</td>
<td>15 (150 study hours)</td>
</tr>
<tr>
<td>Delivery</td>
<td>UGM L7, Campus-based</td>
</tr>
<tr>
<td>Reading List</td>
<td>View on UCL website</td>
</tr>
<tr>
<td>Tutor</td>
<td>Dr Luca Mazzei</td>
</tr>
<tr>
<td>Term</td>
<td>Term 2</td>
</tr>
<tr>
<td>Timetable</td>
<td>View on UCL website</td>
</tr>
</tbody>
</table>

Assessment

- Written examination (main exam period): 80%
- Coursework: 20%

Find out more

For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk