Advanced Safety and Loss Prevention (CENG0020)

Description

Aims:
To provide students with advanced training in hazard identification, quantification and mitigation as well as risk management.

Learning Outcomes:
On completion students should:
- be able to fully appreciate the importance of Safety and Loss Prevention in the process industries;
- be able to identify, quantify and manage hazards in terms of their potential to cause damage to the environment, the work force and the general population outside the perimeter fence;
- be able to apply their knowledge during conceptual design, operation and decommissioning of process plant

Synopsis:
- The application of safety as an inherent part of process plant design will be dealt with and procedures for its implementation are discussed.
- Incidents which have been significant in achieving changes in culture will be highlighted.
- Formal present-day requirements of engineering for safety, including the methodology for establishing necessary criteria, implementation and monitoring, verification and validation of safety systems, and responsibility for auditing.
- Basic procedures for Hazard Identification and Development (HAZID), Hazard and Operability Studies (HAZOP) and Quantitative Risk Assessment (QRA). Safety Studies, Safety Cases and their development, Safety Management Systems and the role of the Health and Safety Executive.
- Key consequences arising from gas accumulation and dispersion, explosion, escalation and smoke,
area classification and transportation.
The Masters level (level 7) version of the module (CENG0020) has a stronger focus on unseen, and more open ended, problem solving.
Advanced Safety and Loss Prevention (CENG0020)

Description

Aims:
To provide students with advanced training in hazard identification, quantification and mitigation as well as risk management.

Learning Outcomes:
On completion students should:

- be able to fully appreciate the importance of Safety and Loss Prevention in the process industries;
- be able to identify, quantify and manage hazards in terms of their potential to cause damage to the environment, the work force and the general population outside the perimeter fence;
- be able to apply their knowledge during conceptual design, operation and decommissioning of process plant

Synopsis:

- The application of safety as an inherent part of process plant design will be dealt with and procedures for its implementation are discussed.
- Incidents which have been significant in achieving changes in culture will be highlighted.
- Formal present-day requirements of engineering for safety, including the methodology for establishing necessary criteria, implementation and monitoring, verification and validation of safety systems, and responsibility for auditing.
- Basic procedures for Hazard Identification and Development (HAZID), Hazard and Operability Studies (HAZOP) and Quantitative Risk Assessment (QRA). Safety Studies, Safety Cases and their development, Safety Management Systems and the role of the Health and Safety Executive.
- Key consequences arising from gas accumulation and dispersion, explosion, escalation and smoke,

Key information

Year 2019/20
Credit value 15 (150 study hours)
Delivery PGT L7, Campus-based
Reading List View on UCL website
Tutor Prof Haroun Mahgerefteh
Term Term 2
Timetable View on UCL website

Assessment

- Written examination (main exam period): 80%
- Coursework: 20%

Find out more

For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of June 2019. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.
area classification and transportation.
The Masters level (level 7) version of the module (CENG0020) has a stronger focus on unseen, and more open ended, problem solving.
Chemical Engineering

Advanced Safety and Loss Prevention (CENG0020)

Description

Aims:
To provide students with advanced training in hazard identification, quantification and mitigation as well as risk management.

Learning Outcomes:
On completion students should:
- be able to fully appreciate the importance of Safety and Loss Prevention in the process industries;
- be able to identify, quantify and manage hazards in terms of their potential to cause damage to the environment, the work force and the general population outside the perimeter fence;
- be able to apply their knowledge during conceptual design, operation and decommissioning of process plant

Synopsis:
- The application of safety as an inherent part of process plant design will be dealt with and procedures for its implementation are discussed.
- Incidents which have been significant in achieving changes in culture will be highlighted.
- Formal present-day requirements of engineering for safety, including the methodology for establishing necessary criteria, implementation and monitoring, verification and validation of safety systems, and responsibility for auditing.
- Basic procedures for Hazard Identification and Development (HAZID), Hazard and Operability Studies (HAZOP) and Quantitative Risk Assessment (QRA). Safety Studies, Safety Cases and their development, Safety Management Systems and the role of the Health and Safety Executive.
- Key consequences arising from gas accumulation and dispersion, explosion, escalation and smoke,

Key information

- **Year**: 2019/20
- **Credit value**: 15 (150 study hours)
- **Delivery**: UGM L7, Campus-based
- **Reading List**: View on UCL website
- **Tutor**: Prof Haroun Mahgerefteh
- **Term**: Term 2
- **Timetable**: View on UCL website

Assessment

- **Written examination (main exam period):** 80%
- **Coursework:** 20%

Find out more

For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of June 2019. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.
area classification and transportation.

The Masters level (level 7) version of the module (CENG0020) has a stronger focus on unseen, and more open ended, problem solving.