Chemical Engineering

Thermodynamics (CENG0004)

Description

Aims:
To cover the main principles of classical thermodynamics required by the chemical engineer in order to study the engineering and chemistry required to design and operate processes associated with the chemical industry.

Learning Outcomes:
Upon completion of this module students should:
1. be able to demonstrate knowledge and understanding of the essential facts, concepts, theories and principles of thermodynamics;
2. have the knowledge to apply appropriate science, engineering and mathematical tools to the analysis of problems arising in thermodynamics;
3. have an understanding of the wider multidisciplinary context of the underlying theory of thermodynamics, including its applications to engineering design and application to real world problems;

Synopsis:
Fundamentals and basic definitions;

Aims:
To cover the main principles of classical thermodynamics required by the chemical engineer in order to study the engineering and chemistry required to design and operate processes associated with the chemical industry.

Learning Outcomes:
Upon completion of this module students should:
1. be able to demonstrate knowledge and understanding of the essential facts, concepts, theories and principles of

Key information

Year 2018/19
Credit value 15 (150 study hours)
Delivery UG L4, Campus-based
Reading List View on UCL website
Tutor Dr Ozgur Yazaydin
Term Term 2
Timetable View on UCL website

Assessment

- Written examination (main exam period): 80%
- Coursework: 20%

Find out more

For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of December 2018. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.
thermodynamics;
2. have the knowledge to apply appropriate science, engineering and mathematical tools to the analysis of problems arising in thermodynamics;
3. have an understanding of the wider multidisciplinary context of the underlying theory of thermodynamics, including its applications to engineering design and application to real world problems;

Synopsis:
Fundamentals and basic definitions;
First Law of Thermodynamics;
- Internal energy, enthalpy and heat capacity;
Equations of state;
- Second Law of Thermodynamics;
- Criteria for spontaneous change and equilibrium;
Definition of reversible and irreversible work;
Thermodynamic properties of fluids;
Thermodynamics of compressors and refrigeration systems;
Gas liquefaction and power cycles;
Introduction to phase equilibrium;
Fugacity and activity;
Introduction to solution thermodynamics;