Finite-Element Modelling and Numerical Methods (CEGE0038)

Description
Fundamentals of finite-element modelling and analysis: energy method (variational formulation), Galerkin weak formulation, choice of elements and shape functions (conformity, accuracy, efficiency); mesh generation; isoparametric elements; time-stepping methods (implicit methods, explicit methods, stability); finite-difference approximation of differential equations; applications to 1D and 2D models taken from various areas of engineering: structural mechanics and dynamics (beams, frames, torsion, plates, membranes, vibration), heat/fluid flow, soil mechanics, etc.; nonlinear problems; limitations of finite-element approximation: shear and membrane locking, reduced integration, hourglassing; use of finite-element software.

Key information
- **Year**: 2019/20
- **Credit value**: 15 (150 study hours)
- **Delivery**: PGT L7, Campus-based
- **Reading List**: [View on UCL website](http://ucl.ac.uk)
- **Tutor**: Prof Gert Van Der Heijden
- **Term**: Term 2
- **Timetable**: [View on UCL website](http://ucl.ac.uk)

Assessment
- Written examination (main exam period): 70%
- Coursework: 15%
- Coursework: 15%

Find out more
For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of December 2018. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.
Finite-Element Modelling and Numerical Methods (CEGE0038)

Description
Fundamentals of finite-element modelling and analysis: energy method (variational formulation), Galerkin weak formulation, choice of elements and shape functions (conformity, accuracy, efficiency); mesh generation; isoparametric elements; time-stepping methods (implicit methods, explicit methods, stability); finite-difference approximation of differential equations; applications to 1D and 2D models taken from various areas of engineering: structural mechanics and dynamics (beams, frames, torsion, plates, membranes, vibration), heat/fluid flow, soil mechanics, etc.; nonlinear problems; limitations of finite-element approximation: shear and membrane locking, reduced integration, hourglassing; use of finite-element software.

Key information

<table>
<thead>
<tr>
<th>Year</th>
<th>2019/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit value</td>
<td>15 (150 study hours)</td>
</tr>
<tr>
<td>Delivery</td>
<td>UGM L7, Campus-based</td>
</tr>
<tr>
<td>Reading List</td>
<td>View on UCL website</td>
</tr>
<tr>
<td>Tutor</td>
<td>Prof Gert Van Der Heijden</td>
</tr>
<tr>
<td>Term</td>
<td>Term 2</td>
</tr>
<tr>
<td>Timetable</td>
<td>View on UCL website</td>
</tr>
</tbody>
</table>

Assessment

- Written examination (main exam period): 70%
- Coursework: 15%
- Coursework: 15%

Find out more
For more information about the department, programmes, relevant open days and to browse other modules, visit ucl.ac.uk

Disclaimer: All information correct as of December 2018. Please note that aspects of the module may be subject to change. UCL will make best efforts to inform applicants of major changes.