MEDICAL SCIENCES AND ENGINEERING MSci / UCAS CODE: HA11 2018 ENTRY

www.ucl.ac.uk/prospectus/surgery
This new cross-faculty degree aims to give students a strong foundation in the human body and disease along with an understanding of design and engineering principles. The purpose of this is to combine innovation and technology with patient care. Students following the MSci programme will be able to carry out an additional research project, and also have the flexibility of selecting a theme for their optional modules in year four.

Key information

Programme starts
September 2018

Location
London, Bloomsbury

Degree benefits

- You will learn about the human body and disease, as well as ways of developing and implementing innovative therapies in order to deliver what is an increasingly technology-driven standard of care.
- You will have the benefit of teaching underpinned by world-leading research activity in medical devices across UCL’s faculties.
- You will engage with scientists, clinicians and engineers across UCL’s Bloomsbury, Royal Free and Stanmore campuses. This close interaction with national hospitals means that education is driven by medical challenges.
- You will develop your entrepreneurial skills and learn how research can be translated into clinical practice. You will also learn about the related challenges of commercialisation within the Medical Technology industry.

Research Excellence Framework (REF) 2014

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK’s higher education funding bodies, and the results used to allocate research funding from 2015/16.

- 80%: Clinical Medicine subjects; 95%: General Engineering subjects rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL’s research, and browse case studies, on our Research Impact website.

Degree structure

In each year of your degree you will take a number of individual modules, normally valued at 0.5 or 1.0 credits, adding up to a total of 4.0 credits for the year. Modules are assessed in the academic year in which they are taken. The balance of compulsory and optional modules varies from programme to programme and year to year. A 1.0 credit is considered equivalent to 15 credits in the European Credit Transfer System (ECTS).

This degree is split equally between engineering and medical science and is composed of eight compulsory modules in year one and eight in year two.

In year three, students will have the opportunity to personalise their programme as four modules are compulsory and four are optional. In the final year all modules are optional.

Optional modules will be chosen from a range available throughout UCL and students will be encouraged to design their degree along an engineering, medical sciences or business/innovation theme.

MSci students will be able to carry out a bioengineering-system research project in their third year as well as a research project in their final year.

YEAR ONE

<table>
<thead>
<tr>
<th>Core or compulsory module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Introduction to Engineering Medicine</td>
</tr>
<tr>
<td>- Cardiovascular and Respiratory Function in Health and Disease</td>
</tr>
<tr>
<td>- Mathematics and Modelling</td>
</tr>
<tr>
<td>- Medical Instrumentation</td>
</tr>
<tr>
<td>- Infection, Inflammation and Repair</td>
</tr>
<tr>
<td>- The Gut, Liver and Drug Metabolism</td>
</tr>
<tr>
<td>- Materials and Mechanics</td>
</tr>
<tr>
<td>- Professional Engineering Practice</td>
</tr>
</tbody>
</table>

Optional modules

- All first year modules are compulsory.

YEAR TWO

<table>
<thead>
<tr>
<th>Core or compulsory module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- The Functional Nervous System and Brain</td>
</tr>
<tr>
<td>- Medical Devices</td>
</tr>
<tr>
<td>- Mathematical Modelling and Analysis</td>
</tr>
<tr>
<td>- Musculoskeletal Biology</td>
</tr>
<tr>
<td>- Manufacturing Regenerative Medicines</td>
</tr>
<tr>
<td>- Fundamentals of Biomechanics</td>
</tr>
<tr>
<td>- Kidneys, Hormonal Control of Human Physiology, Fluid Balance and Nutrition</td>
</tr>
<tr>
<td>- Professional Medical Practice</td>
</tr>
</tbody>
</table>

Optional modules

- All second year modules are compulsory.

YEAR THREE

<table>
<thead>
<tr>
<th>Core or compulsory module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Medical Electronics and Neural Engineering</td>
</tr>
<tr>
<td>- Frailty and Ageing</td>
</tr>
<tr>
<td>- Professional Clinical Practice</td>
</tr>
<tr>
<td>- Research Project</td>
</tr>
</tbody>
</table>

Optional modules

- A variety of optional modules will be available, allowing students to personalise their degree along an engineering, medical sciences or business/innovation theme.
FINAL YEAR

Core or compulsory module(s)

- There are no compulsory modules in year four.

Optional modules

- Students will be able to select modules from a range, allowing them to personalise their degree along an engineering, medical sciences or business/innovation theme. Optional modules include:
 - Advanced Molecular Diagnosis in Infectious Disease
 - Applications of Bioengineering and Introduction to Medical Imaging
 - Clinical Orthopaedics
 - Physics of the Human Body
 - Research Project

Your learning

Taught modules will be supported by specially-tailored, lab-based group tutorials. Working in small teams, students will apply their knowledge within a supported environment, supervised by academics. Formal learning will include practical classes, case-based discussions, workshops and research projects (group and individual).

Fieldwork

No

Placement

Graduates will be equipped to deliver world-class biomedical engineering and regenerative medicine solutions in clinical, commercial, regulatory and research environments. They will have the skills to move into the expanding global medical technologies and regenerative medicine sectors as product specialists, researchers, designers and regulatory advisors. Graduates may also enter NHS Clinical Scientist and Clinical Engineer training programmes.

Assessment

A range of methods of assessment will be used across the programme, including: written coursework, project reports, and unseen examinations (designed to test knowledge and understanding of both medical sciences and engineering).

Your career

Graduates will be equipped to deliver world-class biomedical engineering and regenerative medicine solutions in clinical, commercial, regulatory and research environments. They will have the skills to move into the expanding global medical technologies and regenerative medicine sectors as product specialists, researchers, designers and regulatory advisors. Graduates may also enter NHS Clinical Scientist and Clinical Engineer training programmes.

Recent government and industry reports have identified skills shortages in the healthcare and pharmaceutical sectors. These shortages need to be met by multidisciplinary graduates who can think broadly to create new solutions to global challenges.

The first cohort of students admitted to the Medical Sciences and Engineering BSc is due to graduate in 2020. Therefore, information about career destinations for students on this programme is not yet available.

Your application

Application for admission should be made through UCAS (the Universities and Colleges Admissions Service). Applicants currently at school or college will be provided with advice on the process; however, applicants who have left school or who are based outside the United Kingdom may obtain information directly from UCAS.

We will be looking for evidence of your motivation, commitment and enthusiasm to pursue this degree. This could be demonstrated through relevant work or other experiences (e.g. attendance at a scientific exhibition). This programme will suit students who want to make a difference in the world, who are innovative and inventive, and who are prepared to be challenged. Due to the course content, we strongly recommend that applicants have an A or AS level in biology and maths.

We will use your predicted or achieved academic qualifications, your personal statement and your reference to decide whether to offer you a place.
Entry requirements

A LEVELS
Grades
AAA-AAB

Subjects
Physics or Mathematics, and Chemistry or Biology, plus one other subject, are required.

GCSE
English Language and Mathematics at grade B. For UK-based students, a grade C or equivalent in a foreign language (other than Ancient Greek, Biblical Hebrew or Latin) is required. UCL provides opportunities to meet the foreign language requirement following enrolment, further details at: www.ucl.ac.uk/ug-reqs

IB DIPLOMA
Points
36 overall.

Subjects
A total of 17 points in three higher level subjects, with no score below 5, to include Physics or Mathematics, and Chemistry or Biology, plus one further subject.

OTHER QUALIFICATIONS
UCL considers a wide range of UK and international qualifications for entry into its undergraduate programmes. Full details are given at: www.ucl.ac.uk/otherquals

UNDERGRADUATE PREPARATORY CERTIFICATES (International foundation courses)
The Undergraduate Preparatory Certificates (UPCs) are intensive one-year foundation courses for international students of high academic potential who are aiming to gain access to undergraduate degree programmes at UCL and other top UK universities.

Typical UPC students will be high achievers in a 12-year school system which does not meet the standard required for direct entry to UCL.

For more information see: www.ucl.ac.uk/upc.

TUITION FEES
The fees indicated are for undergraduate entry in the 2017/18 academic year and are for the first year of the programme at UCL only. Fees for 2018 entry will appear here as soon as they are available.

// UK & EU: £9,250 (2017/18 - see below)
// Overseas: £21,960 (2017/18)

The UK/EU fee quoted above may be subject to increase for the 2018/19 academic year and for each year of study thereafter and UCL reserves the right to increase its fees in line with UK government policy (including on an annual basis for each year of study during a programme). Fees for overseas students may be subject to an annual increase in subsequent years of study by up to 5%.

Please see the full details of UCL’s fees and possible changes on the UCL Current Students website.

Additional costs
None

FUNDING
Various funding options are available, including student loans, scholarships and bursaries. UK students whose household income falls below a certain level may also be eligible for a non-repayable bursary or for certain scholarships. Please see the Fees and funding pages for more details.

CONTACT
Dr Ivan Wall
Email: biochemeng@ucl.ac.uk
Telephone: +44 (0)20 7679 9683
Department: Division of Surgery and Interventional Science

EU referendum
For up-to-date information relating to specific key questions following the UK’s decision to leave the EU, please refer to: www.ucl.ac.uk/eu-referendum

Disclaimer
This information is for guidance only. It should not be construed as advice nor relied upon and does not form part of any contract. For more information on UCL’s degree programmes please see the UCL Undergraduate Prospectus at www.ucl.ac.uk/prospectus