SCIENTIFIC COMPUTING MSc
2017/18 ENTRY

www.ucl.ac.uk/graduate/physast
Scientists and engineers are tackling ever more complex problems, most of which do not admit analytical solutions and must be solved numerically. Numerical methods can only play an even more important role in the future as we face even bigger challenges. Therefore, skilled scientific programmers are in high demand in industry and academia and will drive forward much of the future economy.

Degree summary

This programme aims to produce highly computationally skilled scientists and engineers capable of applying numerical methods and critical evaluation of their results to their field of science or engineering. It brings together best practice in computing with cutting-edge science and provides a computing edge over traditional science, engineering and mathematics programmes.

- **UCL** has a global reputation for excellence in research and is committed to delivering impact and innovations that enhance the lives of people in the UK, across Europe and around the world. UCL is consistently placed in the global top 20 across a wide range of university rankings (currently fifth in QS World University Rankings 2014/15). Furthermore, the Thomson Scientific Citation Index shows that UCL is the 2nd most highly cited European university and 13th in the world.

- Our wide-ranging expertise provides opportunities for groundbreaking interdisciplinary investigation. World-leading experts in the field and students benefit from a programme of distinguished visitors and guest speakers in many scientific seminars. In this way a network of collaborators, mentors and peers is created, which students can access in their future career.

- This degree has been designed to balance a professional software development and high performance computing skills with a comprehensive selection of numerical mathematics and scientific subjects, culminating in a scientific computing dissertation project. The dual aspect of a science and computing degree enable students to tackle real-life problems in a structured and rigorous way and produce professional software for their efficient solution.

The programme is delivered through a combination of lectures and hands-on programming and includes a variety of short programming projects, delivered as part of the taught component. Students are encouraged to participate in scientific seminars, for example, weekly seminars at the UCL Centre for Inverse Problems. Assessment is through examinations, assignments, small projects and the dissertation, including a computer programme.

Degree structure

Mode: Full-time: 1 year; Part-time: 2 years
Location: London, Bloomsbury

Students undertake modules to the value of 180 credits. The programme consists of six core modules (90 credits), two optional modules (30 credits) and a dissertation/report (60 credits).

A Postgraduate Diploma, six core modules (90 credits), two optional modules (30 credits), is also offered.

CORE MODULES
- Computational and Simulation Methods
- Numerical Methods
- Numerical Optimisation
- Research Computing with C++
- Research Software Engineering with Python
- Techniques of High-Performance

OPTIONAL MODULES
- Options include a wide selection of modules across UCL Engineering and UCL Mathematical & Physical Sciences.

DISSERTATION/REPORT
- All students undertake an independent research project project which culminates in a dissertation of 20,000 words.
Your career

We expect our graduates to take up exciting science and engineering roles in industry and academia with excellent prospects for professional development and steep career advancement opportunities. This degree enable students to work on cutting-edge real-life problems, overcome the challenges they pose and so contribute to advancing knowledge and technology in our society.

Employability

Students develop a comprehensive set of skills which are in high demand both in industry and academia: professional software development skills including state-of-the-art scripting and compiled languages; knowledge of techniques used in high-performance computing; understanding and an ability to apply a wide range of numerical methods and numerical optimisation; a deeper knowledge of their chosen science subject; oral and written presentational skills.
Entry requirements

An upper second-class Bachelor's degree from a UK university or an overseas qualification of an equivalent standard in mathematics, computer science, engineering, physical sciences or a closely related subject.

English language proficiency level

If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.

The level of English language proficiency for this programme is: Standard.

Information about the evidence required, acceptable qualifications and test providers is provided at: www.ucl.ac.uk/graduate/english-requirements

Your application

Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

When we access your application we would like to learn:

// why you want to study Scientific Computing at graduate level
// why you want to study Scientific Computing at UCL
// what particularly attracts you to the chosen programme
// how your academic and professional background meets the demands of this challenging programme
// where you would like to go professionally with your degree

Together with essential academic requirements, the personal statement is your opportunity to illustrate whether your reasons for applying to this programme match what the programme will deliver.

FEES AND FUNDING 2017/18 ENTRY

// UK: £9,020 (FT), £4,565 (PT)
// EU: £9,020 (FT), £4,565 (PT)
// Overseas: £25,130 (FT), £10,980 (PT)

The tuition fees shown are for the year indicated above. Fees for subsequent years may increase or otherwise vary. Further information on fee status, fee increases and the fee schedule can be viewed on the UCL Current Students website.

Full details of funding opportunities can be found on the UCL Scholarships website: www.ucl.ac.uk/scholarships

APPLICATION DEADLINE

All applicants: 28 July 2017

Details on how to apply are available on the website at: www.ucl.ac.uk/graduate/apply

CONTACT

Mr Andrew Keegan, Programme Administrator

Email: physast.msc@ucl.ac.uk

Telephone: +44 (0)20 7679 7246

EU referendum

For up-to-date information relating to specific key questions following the UK's decision to leave the EU, please refer to www.ucl.ac.uk/eu-referendum