PHYSICS AND ENGINEERING IN MEDICINE: RADIATION PHYSICS MSc / 2018/19 ENTRY

www.ucl.ac.uk/graduate/medphys
Physics and Engineering in Medicine: Radiation Physics MSc

This programme pathway is designed for students with a developing interest in radiation physics, both ionising and non-ionising, that underpins many of the imaging and treatment technologies applied in modern medicine. Students gain an understanding of scientific principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

Degree summary

Students study the physics theory and practice that underpins modern medicine, and learn to apply their knowledge to established and emerging technologies in medical science. The programme covers the applications of both ionising and non-ionising radiation to the diagnosis and treatment of human disease and disorder, and includes research project, workplace skills development and computational skills needed to apply this theory into practice.

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students on this programme receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the University College London Hospitals NHS Foundation Trust, as well as undertaking industrial contract research and technology transfer. The department is also a collaborator in the nearby London Proton Therapy Centre, currently under construction.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is also available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development.

The programme is delivered through a combination of lectures, demonstrations, tutorials, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew’s, and the Royal Free Hospital. Assessment is through supervised examination, coursework and assignments, a research dissertation and an oral examination.

Degree structure

Mode: Full-time: 1 year; Part-time: 2 years
Location: London, Bloomsbury

Students undertake modules to the value of 180 credits. The programme consists of seven core modules (105 credits), one optional module (15 credits), and a research project (60 credits).

A Postgraduate Diploma of eight modules (120 credits) is offered.
A Postgraduate Certificate of four modules (60 credits) is offered.

Degree structure

CORE MODULES

- Ionising Radiation Physics: Interactions and Dosimetry
- Imaging with Ionising Radiation
- MRI and Biomedical Optics
- Ultrasound in Medicine
- Treatment with Ionising Radiation
- Clinical Practice
- MSc Research Project
- Medical Device Enterprise Scenario

OPTIONAL MODULES

Students choose one of the following:

- Computing in Medicine
- Applications of Biomedical Engineering
- Programming Foundations for Medical Image Analysis

DISSERTATION/REPORT

All MSc students undertake an independent research project within the broad area of physics and engineering in medicine which culminates in a report of up to 10,000 words, a poster and an oral examination.
Your career

A large percentage of graduates from the MSc continue on to PhD study, often in one of the nine research groups within the department, as a result of the skills and knowledge they acquire on the programme. Other graduates commence or resume training or employment within the healthcare sector in hospitals or industry, both within the UK and abroad.

Employability

Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.
Entry requirements

A minimum of an upper-second class UK Bachelor’s degree from a UK university or an overseas qualification of an equivalent standard in physics, engineering, computer science, mathematics, or other closely related discipline. Workplace knowledge and expertise are also considered. Applicants with a lower than upper-second class degree may be invited for a short online interview with programme tutors as part of their application process.

English language proficiency level

If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.

The level of English language proficiency for this programme is: Standard.

Information about the evidence required, acceptable qualifications and test providers is provided at:
www.ucl.ac.uk/graduate/english-requirements

Your application

Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

When we assess your application we would like to learn:

// why you want to study Radiation Physics at graduate level
// why you want to study this programme at UCL
// whether you have relevant industrial or workplace experience
// how your academic and professional background meets the demands of this challenging programme
// where you would like to go professionally after your degree

Together with essential academic requirements, the personal statement is your opportunity to illustrate whether your reasons for applying to this programme match what the programme will deliver.

Application fee: There is an application processing fee for this programme of £75 for online applications and £100 for paper applications. More details about the application fee can be found at
www.ucl.ac.uk/prospective-students/graduate/taught/application.

FEES AND FUNDING 2018/19 ENTRY

// UK: £11,880 (FT), £6,070 (PT)
// EU: £11,880 (FT), £6,070 (PT)
// Overseas: £24,420 (FT), £12,950 (PT)

The tuition fees shown are for the year indicated above. Fees for subsequent years may increase or otherwise vary. Further information on fee status, fee increases and the fee schedule can be viewed on the UCL Current Students website.

Full details of funding opportunities can be found on the UCL Scholarships website: www.ucl.ac.uk/scholarships

APPLICATION DEADLINE

All applicants: 27 July 2018

Details on how to apply are available on the website at:
www.ucl.ac.uk/graduate/apply

CONTACT

Dr Martin Fry, Admissions Tutor

Email: pg-medphys@ucl.ac.uk

Telephone: +44 (0)207 679 2548

EU referendum

For up-to-date information relating to specific key questions following the UK’s decision to leave the EU, please refer to
www.ucl.ac.uk/eu-referendum